導入
今日からしばらくは座標平面について扱います。これからの長い関数生活に嫌気がささないよう、一問一問着実にこなしていきましょう
問題
座標平面上の3直線
$3x+y=1, kx-5y=-3, x+2y=7$
が1点で交わるとき,定数$k$の値はいくつになるか.
【立教大学 2020】
解答
$3x+y=1 \cdots➀$と$x+2y=7\cdots➁$の交点を求める.
$➀×2-➁$より,
$5x=-5$
$x=-1$
$∴(x,y)=(-1, 4)$
これが$kx-5y=-3$上にあるので,
$-k-20=-3$
$∴k=-17$
コメント